Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process
نویسندگان
چکیده
Indoor localization using Received Signal Strength Indication (RSSI) fingerprinting has been extensively studied for decades. The positioning accuracy is highly dependent on the density of the signal database. In areas without calibration data, however, this algorithm breaks down. Building and updating a dense signal database is labor intensive, expensive, and even impossible in some areas. Researchers are continually searching for better algorithms to create and update dense databases more efficiently. In this paper, we propose a scalable indoor positioning algorithm that works both in surveyed and unsurveyed areas. We first propose Minimum Inverse Distance (MID) algorithm to build a virtual database with uniformly distributed virtual Reference Points (RP). The area covered by the virtual RPs can be larger than the surveyed area. A Local Gaussian Process (LGP) is then applied to estimate the virtual RPs' RSSI values based on the crowdsourced training data. Finally, we improve the Bayesian algorithm to estimate the user's location using the virtual database. All the parameters are optimized by simulations, and the new algorithm is tested on real-case scenarios. The results show that the new algorithm improves the accuracy by 25.5% in the surveyed area, with an average positioning error below 2.2 m for 80% of the cases. Moreover, the proposed algorithm can localize the users in the neighboring unsurveyed area.
منابع مشابه
Indoor Localization of Mobile Devices for a Wireless Monitoring System Based on Crowdsourcing
This thesis presents the possibility of doing indoor localization using smartphones. Because smartphones are becoming more and more common today, deploying a localization system based on data gathered by mobile phones is a cheap and viable solution. This work focuses on two aspects: sensor evaluation and indoor localization (of devices and access points). In order to understand how different co...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملLocating in Crowdsourcing-Based DataSpace: Wireless Indoor Localization without Special Devices
Locating a target in an indoor social environment with a Mobile Network is important and difficult for location-based applications and services such as targeted advertisements, geosocial networking and emergency services. A number of radio-based solutions have been proposed. However, these solutions, more or less, require a special infrastructure or extensive pretraining of a site survey. Since...
متن کاملEKF–GPR-Based Fingerprint Renovation for Subset-Based Indoor Localization with Adjusted Cosine Similarity
Received Signal Strength Indicator (RSSI) localization using fingerprint has become a prevailing approach for indoor localization. However, the fingerprint-collecting work is repetitive and time-consuming. After the original fingerprint radio map is built, it is laborious to upgrade the radio map. In this paper, we describe a Fingerprint Renovation System (FRS) based on crowdsourcing, which avo...
متن کاملPerform Three Data Mining Tasks with Crowdsourcing Process
For data mining studies, because of the complexity of doing feature selection process in tasks by hand, we need to send some of labeling to the workers with crowdsourcing activities. The process of outsourcing data mining tasks to users is often handled by software systems without enough knowledge of the age or geography of the users' residence. Uncertainty about the performance of virtual user...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016